(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

walk#1(Leaf(x2)) → cons_x(x2)
walk#1(Node(x5, x3)) → comp_f_g(walk#1(x5), walk#1(x3))
comp_f_g#1(comp_f_g(x4, x5), comp_f_g(x2, x3), x1) → comp_f_g#1(x4, x5, comp_f_g#1(x2, x3, x1))
comp_f_g#1(comp_f_g(x7, x9), cons_x(x2), x4) → comp_f_g#1(x7, x9, Cons(x2, x4))
comp_f_g#1(cons_x(x2), comp_f_g(x5, x7), x3) → Cons(x2, comp_f_g#1(x5, x7, x3))
comp_f_g#1(cons_x(x5), cons_x(x2), x4) → Cons(x5, Cons(x2, x4))
main(Leaf(x4)) → Cons(x4, Nil)
main(Node(x9, x5)) → comp_f_g#1(walk#1(x9), walk#1(x5), Nil)

Rewrite Strategy: INNERMOST

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
walk#1(Node(x5, x3)) →+ comp_f_g(walk#1(x5), walk#1(x3))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x5 / Node(x5, x3)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)